
Semantic Importance Sampling for Statistical
Model Checking?

Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz, and Mark Klein

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen,lwrage,chaki,dio,mk}@sei.cmu.edu

Abstract. Statistical Model Checking (SMC) is a technique, based on
Monte-Carlo simulations, for computing the bounded probability that a
specific event occurs during a stochastic system’s execution. Estimating
the probability of a “rare” event accurately with SMC requires many
simulations. To this end, Importance Sampling (IS) is used to reduce the
simulation effort. Commonly, IS involves “tilting” the parameters of the
original input distribution, which is ineffective if the set of inputs causing
the event (i.e., input-event region) is disjoint. In this paper, we propose a
technique called Semantic Importance Sampling (SIS) to addresses this
challenge. Using an SMT solver, SIS recursively constructs an abstract
indicator function that over-approximates the input-event region, and
then uses this abstract indicator function to perform SMC with IS. By
using abstraction and SMT solving, SIS thus exposes a new connection
between the verification of non-deterministic and stochastic systems. We
also propose two optimizations that reduce the SMT solving cost of SIS
significantly. Finally, we implement SIS and validate it on several prob-
lems. Our results indicate that SIS reduces simulation effort by multiple
orders of maganitude even in systems with disjoint input-event regions.

1 Introduction

Many systems deployed in the real-world are stochastic, i.e., their behavior de-
pends on random inputs (e.g., sensor readings, task execution times, etc.) As
these systems become more complex, there is a growing demand for efficient and
precise techniques to verify correctness of their behavior. In this paper, we target
a common verification problem – estimating the probability of an event τ (e.g.,
some sort of failure) during the execution of a stochastic system M. Analytic
solutions to this problem (e.g., probabilistic model checking, see Section 2) do
not scale to many real-world systems due to complexity. We focus on an al-
ternate approach called Statistical Model Checking (SMC) [11], which relies on
Monte-Carlo-based simulations to solve this verification task more scalably.

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001772

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Semantic Importance Sampling for Statistical Model Checking

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
; ; ; Wrage /Jeffery Hansen LutzChaki /SagarNiz /Dionsio deKlein /Mark

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

3

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Hansen, et. al.

𝑥

𝑓(𝑥)

0 10 2 4 6 8

𝑥𝜏

(𝑎)

𝑥

𝑔(𝑥)

0 10

0.125

2 4 6 8

(𝑏)

𝑥

𝑔∗(𝑥)

0 10

0.25

2 4 6 8

(𝑐)

0.1

Fig. 1. Example of SIS; f(x) = original input distribution; g(x) = tilted distribution;
g∗(x) = distribution produced by SIS.

SMC produces two results – the estimate p̂ of the probability p of τ and a
measure e of precision of p̂. The key challenge in SMC is “simulation explosion”
– the number of simulations required to achieve a high e becomes prohibitively
large if p is small (i.e., τ is rare). Importance Sampling [9] (IS) has been shown
to address this challenge. Suppose the random input x to M has distribution
f(x). In IS, we first perform SMC under a different input distribution g(x) that
makes τ more likely (i.e., increases p), and then adjust the result back to f(x).

Traditionally, importance Sampling is implemented by “tiliting” the param-
eters of the input distributions to increase the likelihood of τ . However, tilting is
less effective if the set of inputs that cause τ , i.e., the input-event region denoted
xτ , is disjoint. For instance, this happens when analysing a program where τ
only occurs if the execution follows one of several control-flow paths, each trig-
gered by a distinct input range. Figure 1(a) shows such a case. The actual input
distrbution f(x) is uniform in the range [0, 10], and xτ = [2.99, 3.01]∪[6.99, 7.01].
Figure 1(b) shows a titled distribution g(x) uniform in the range [2, 10]. While
g(x) make τ more likely than f(x), it still assigns positive weight to large parts
– e.g., (3.01, 6.99) – of the input space that do not belong to xτ .

In this paper, we address this challenge, and make three specific contribu-
tions. First, we develop a new technique to construct more precise input distr-
butions for IS – such as g∗(x) shown in Figure 1(c) – even when the input-event
region is disjoint. This technique, which we call Semantic Importance Sampling
(SIS), takes as input a description of M and f(x), and recursively computes a
precise “over-approximation” of xτ in the form of an abstract indicator func-
tion (AIF). In each step of the recursion, SIS constructs a verification condition
using M and f(x) and checks its satisfiability with a SMT solver to eliminate
parts of the input space that are not in xτ . The algorithm outputs an AIF rep-
resented by a set of “input cubes”, i.e., a disjunction of intervals [?] over the
input variables of M. Subsequently, SIS uses the AIF to construct a precise
input distribution, and perform SMC with IS. By using the semantics of M,
SIS succesfully applies concepts and techniques used widely in the verification
of non-deterministic systems (such as abstraction, SMT solving, and verification

Semantic Importance Sampling for SMC 3

conditions) to the analysis of stochastic systems. In this way, SIS builds new
bridges between these two disciplines.

The most expensive component of SIS are the calls to the SMT solver. Our
second contribution is two optimizations to SIS that reduce the number of SMT
calls while maintaining correctness. Finally, we implement SIS in a tool called
osmosis and use it to verify a number of stochastic systems with rare events.
Our results indicate that SIS reduces the number of simulations significantly,
in some cases by a factor of over 600, and verification time by over two orders
of magnitude. Furthermore, our optimizations reduce both the number of SMT
calls and overall SMT solving time, typically by a factor of 2. All our tools and
examples are available at andrew.cmu.edu/~schaki/misc/osmosis.zip.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents background definitions and concepts. Section 4 presents SIS,
and Section 5 presents our tool osmosis. In Section 6, we present our experiments
and results, and in Section 7, we conclude.

2 Related Work

SC: This needs a lot of work. Like statistical model checking, probabilistic
model checking [10] is also an automated, algorithmic approach for computing
numerical properties of stochastic systems. However, in this approach, the sys-
tem is modeled as a finite state probabilistic automaton, e.g., a discrete time
Markov chain (DTMC), a continuous time Markov chain (CTMC), or a Markov
decision process (MDP) which is exhaustively explored in the analysis. The prop-
erty is expressed as formula in a temporal logic, e.g., probabilistic Computation
Tree Logic (PCTL) [5]. For example, the system could be a DTMC modeling
the repeated throwing of a biased coin that comes up “heads” with probability
0.55 and “tails” with probability 0.45. The property could be the “probability
of seeing 3 heads followed by 4 tails followed by 5 heads”. Probabilistic model
checking then involves an exhaustive exploration of the DTMC’s statespace to
compute the property’s value. Typically, this involves the following steps: (i)
compute the set of reachable discrete states S of an automaton constructed by
composing the system with the property; (ii) construct a set of equations Q
whose solution corresponds to the steady-state probabilities of S; and (iii) solve
Q numerically and extract the value of the property from the solution. Proba-
bilistic model checking is an active area of research, involving both theoretical
advancements [3] and practical tool development [7]. It has been used to verify
systems ranging from pacemakers [1], root contention protocols [8] and biologi-
cal pathways [6]. For our approach, we used statistical model checking, since the
systems we want to verify are too complex to be modeled as Markov chains.

3 Background

Consider a system M with finite vector of random inputs x. Assume that M is
deterministic, i.e., its behavior is fixed for a fixed value of x. The SMC problem

4 Hansen, et. al.

p =

∫
IM|=Φ(x)f(x)dx p̂ =

∑N
i=1 IM|=Φ(xi) RE(p̂) =

√
Var(p̂)

E[p̂]

RE(p̂) =

√
1− p
pN

=⇒ N =
1− p

pRE2(p̂)

p =

∫
IM|=Φ(x)

f(x)

g(x)
g(x)dx =⇒ p =

∫
IM|=Φ(x)W (x)g(x)dx

Fig. 2. Background definitions. Var = variance; E = expected value; W (x) = f(x)
g(x)

.

is to estimate the probability that M satisfies a property Φ, denoted M |= Φ,
given a joint probability distribution f(x) on x, i.e., to estimate p = Pr[M |= Φ].
We assume that whetherM |= Φ under input x can be determined by simulating
M for finite time. Specifically, we assume that M is a program that terminates
under all inputs, and M |= Φ under input x iff the execution of M under input
x violates an assertion (representing a desired safety property) in M.

Let us write x∼f(x) to mean x is distributed by f(x). SMC involves a series
of Bernoulli trials, modeling each trial as a Bernoulli random variable having
value 1 with probability p, and 0 with probability 1−p. For each trial, a random
vector x∼f(x) is generated. The systemM is simulated with input x to generate
a trace σ. The trial’s outcome is 0 if Φ holds on σ, and 0 otherwise.

Define an indicator function IM|=Φ(x) that returns 1 if M |= Φ under input
x, and 0 otherwise. Then the probability p can be calculated as in Figure 2. It
can be estimated as p̂ shown in Figure 2, where N is the number of trials, and
xi∼f(x). The precision of p̂ is quantified by its “relative error” RE(p̂), defined
in Figure 2. The second row in Figure 2 shows a known relationship [2] beween
RE(p̂), p and N , and its rearrangement with N on the left of the equality.

Importance Sampling. Figure 2 shows that the number of simulations
needed to achieve a fixed precision with SMC increases rapidly as the target
event becomes rarer. Importance Sampling [9] (IS) has been applied [2] to address
this challenge effectively by reducing Var(p̂). The key idea behind IS is to first
simulate M under a different input distribution g(x) with lower variance, and
then mathematically adjust the result back to the original distribution f(x).
The third row of Figure 2 shows the definition of p using g(x) and the “weight

function” W (x) = f(x)
g(x) . The estimator for this form is:

p̂ =

N∑
i=1

IM|=Φ(xi)W (xi) (1)

where the xi∼g(x). The biggest challenge in applying IS effectively is choosing a
“good” g(x) that will reduce Var(p̂). Typically this is done by “tilting” f(x) by
changing its distribution parameters (mean, variance etc.) However, as discussed,
tilting is not effective if Φ is disjoint in the input space. Our main contribution,

Semantic Importance Sampling for SMC 5

SIS, is a technique for constructing a good g(x) even in such cases. We describe
this technique in detail in the next section.

4 Semantic Importance Sampling

To explain SIS, we begin with a known result [2] that there always exists an
optimal IS distribution:

g�(x) =
IM|=Φ(x)f(x)

p
(2)

for which Var(p̂) = 0, i.e., if IS is done with g(x) = g�(x), then a single sample is
sufficient to compute p̂. However, there are two challenges to using g�(x) for IS:
(i) g�(x) depends on p, the answer we are actually looking for; and (ii) g�(x) also
depends on the indicator function IM|=Φ(x), but since this function represents
M itself, it may be too complex to represent analytically.

The key insight behind SIS is to construct an abstract indicator function
(AIF) I∗M|=Φ(x) such that: (i) IM|=Φ(x) = 1⇒ I∗M|=Φ(x) = 1; and (ii) I∗M|=Φ(x)

is simple enough to represent analytically. Note that the AIF I∗M|=Φ(x) represents
an over-approximation of the set of inputs under whichM satisfies Φ. This AIF
induces the following IS distribution and weight function:

g∗(x) =
I∗M|=Φ(x)f(x)

p∗
(3)

W ∗(x) =
f(x)

g∗(x)
=

f(x)p∗

I∗M|=Φ(x)f(x)
=

p∗

I∗M|=Φ(x)
(4)

where p∗ = E[I∗M|=Φ(x) = 1] is the probability that for an input x ∼ f(x),

I∗M|=Φ(x) = 1. Note that as I∗M|=Φ(x) approaches IM|=Φ(x), g∗(x) also ap-

proaches g�(x). In the limit, I∗M|=Φ(x) = IM|=Φ(x) implies g∗(x) = g�(x).

Probability Estimation and Relative Error in SIS. Substituting W ∗(x)
from (4) into (1), we get the SIS estimator:

p̂ =
1

N

N∑
i=1

IM|=Φ(xi)W
∗(xi) =

1

N

N∑
i=1

IM|=Φ(xi)
p∗

I∗M|=Φ(xi)
(5)

where xi∼ g∗(x). Note that, from (3), if xi∼ g∗(x), then I∗M|=Φ(xi) = 1. Also,

p∗ is a constant. Hence, (5) simplifies to:

p̂ =
p∗

N

N∑
i=1

IM|=Φ(xi) = p∗ × p̂raw, where (6)

p̂raw =
1

N

N∑
i=1

IM|=Φ(xi) (7)

6 Hansen, et. al.

is the estimated probability that for an input xi∼g∗(x), IM|=Φ(xi) = 1, i.e., xi is
an input whereM |= Φ holds. Since p̂raw is an unweighted average of Bernoulli
random variables, its relative error can be estimated [2] as:

RE(p̂raw) ≈ 1√
prawN

(8)

Furthermore, from (6), since p̂ = p∗ × p̂raw, and p∗ is a constant, the relative
error for p̂ is the same as the relative error of p̂raw, i.e., RE(p̂) = RE(p̂raw).

4.1 The SIS Algorithm

The SIS algorithm involves the following steps:

1. Use iterative abstraction-refinement to construct the AIF I∗M|=Φ(x).

2. Calcuate p∗ and g∗(x).
3. Use SMC to estimate p̂raw with desired RE(p̂) = RE(p̂raw), using g∗(x) to

draw random inputs. Output p̂ = p∗ × p̂raw.

The core of SIS is Step 1, the generation of the AIF. We describe this in
the following sections by first discussing our representation of the AIF, then
describing the abstraction-refinement algorithm.

AIF as a Cube Set. We assume that the input x to M is a vector of M
independent1, but not necessarily identically distributed random variables. For
each dimension xi in x, Fi(x) is the Cumulative Distribution Function (CDF),
F−1i (u) is the inverse CDF (or quantile function), and ui = F−1(xi) is the
quantile domain variable. Let ξ be a M -dimensional axis-aligned input domain
hypercube defining an interval [li, hi] on each input variable xi for 1 ≤ i ≤M . We
also define the quantile domain hypercube c defined by the ranges [Fi(li), Fi(hi)]
for each dimension. We use the notation c = F (ξ) and ξ = F−1(c) to transform
cubes between input and quantile space. We will use the terms input cube and
quantile cube to refer to cubes in the input and quantile spaces, respectively.
When the term cube is used without qualification we will assume quantile cubes.
We can now represent the AIF in terms of a qualtile cube set C∗ as:

I∗M|=Φ(x) =

{
1 if ∃c ∈ C∗ | F (x) ∈ c
0 otherwise

(9)

where ∀c ∈ C∗, IM|=Φ(x) = 1⇒ x ∈ c.
Cube Splitting. Let ξU be the input cube defining the support of the input

distribution function f(x). The corresponding qunatile domain cube cU = F (ξU)
will have a range of [0, 1] on each dimension. We call this the level-0 cube. We
write c/i to mean the cube formed by spliting the interval on ui in c in half, and
retaining only the upper half. Similarly, c/i is the result of a similar operation
where the lower half of the interval is retained. Note that we can split on the

1 Non-independent random inputs y are replaced by a function h(x) of independent
random variables x, which is folded into IM|=Φ(y) to yield IM|=Φ(h(x)).

Semantic Importance Sampling for SMC 7

(1) CubeSet aifGen(SMT I,Cube c)
(2) {
(3) if (Solve(I, F−1(c)) == UNSAT) return ∅;
(4) if (level(c) == Lmax) return {c};
(5) int k = (level(c)/G) % M;

(6) Cube c0 = c/k; Cube c1 = c/k;
(7) return aifGen(I, c0) ∪ aifGen(I, c1);
(8) }

Fig. 3. Basic AIF Generation Algorithm; G=variable grouping factor, M=number of
input variables, Lmax=recusion depth limit, Solve = satisfiability check via SMT solver.

same variable multiple times. A level-k cube is the result of k splits on the level-0
cube. For example if cU is the level-0 cube, then cU/1/1 is the level-2 cube in
which the interval for u1 is [0.5, 0.75]. After each split, the probability that a
input drawn from f(x) falls in the result is halved. Thus, the probability of an
input drawn from f(x) falling in a level-k cube is 1

2k
.

Iterative Abstraction-Refinement. Generation of the AIF I∗M|=Φ(x) is
performed recursively through the hierarchical use of an SMT solver. The basic
algorithm aifGen is shown in Figure 3. It takes as input the SMT representation
of the indicator function I, and the input cube c over which to generate an
abstaction. Constant Lmax is the maximum recursion depth. It returns the subset
of level-Lmax cubes in C∗ within cube c. C∗ representing the AIF as defined in
(9) can then be deterimined by calling aifGen, passing the level-0 cube cU as c.

The algorithm works as follows. At Line 3, the SMT solver is applied to the
model I over the cube ξ = F−1(c). The cube is applied to the model by modifying
the assertions in the model corresponding to the intervals on the input variables.

The SMT solver can return SAT, UNSAT or UNKNOWN (e.g., if it times
out). If the result is UNSAT, then M |= Φ does not hold in the input space
described by c, and so it returns the empty set. If the result is SAT or UN-
KNOWN, we continue with the rest of the algorithm. While an UNKNOWN
result will reduce the efficiency of the algorithm, the result will still be sound.

At Line 4, the level of the current cube c is checked against the specified
maximum recursion depth Lmax. If we are at that maximum recursion depth, we
simply return the set containting just the cube c.

At Line 5, we choose an input variable index on which to split the cur-
rent cube. In our current implementation, we simply cycle through the variables
round-robin by using the current level modulo the total number of input vari-
ables M . Integer division by a variable grouping factor G allows us to choose the
same variable G levels in a row before moving to the next variable. It is possi-
ble that other methods of chosing the spliting order may lead to more efficient
abstractions, however we have not yet explored this area.

At Lines 6-7, we split the cube c around the selected variable uk forming the
cubes c0, and c1 for the lower and upper half of the CDF interval on variable uk
in c. We then recufrsively call the generation algorithm on those two sub-cubes
and return the union of the cube sets returned by each call.

8 Hansen, et. al.

Calculation of p∗. All cubes in the set C∗ returned by aifGen are level-
Lmax and non-overlapping. As a result, p∗ is calculated from the number of cubes
in the set, and the recursion depth limit as:

p∗ =
|C∗|

2Lmax
(10)

which represents the probability that an input from the original distribution
f(x) will fall in the abstract indicator function I∗M|=Φ(x).

4.2 Optimized AIF Generation

The most expensive component of aifGen are the calls to Solve. We now present
two optimizations that can reduce the number of calls.

Optimization 1: Skip on UNSAT. Consider the algorithm in Figure 3.
Notice that at the point where we split the cube at Line 6, we already know
that cube c is not UNSAT. The means that if one of the child cubes c0 or c1
is UNSAT, the other one must be SAT2. To take advantage of this, we modify
the algorithm to take an additional boolean argument assumeSAT indicating we
should skip the call to Solve and assume it returns SAT when assumeSAT is
true. Then we make the first recursive call on c0 with assumeSAT set to false. If
this call returns the empty set, then the result for that half was UNSAT, and
we pass true for assumeSAT when making the recurisve call on c1, otherwise we
make the recusrive call with assumeSAT set to false and execute Solve as normal.

Optimization 2: Counter-Example Reuse. A second optimization is
possible by making use of the counter-example returned by Solve when the
result is SAT. In this case, we assume that Solve returns, as counter-example,
a cube ξd containing a satisfying solution. We convert ξd to a quantile space
cube cd = F (ξd). If cd is completely contained by one of the child cubes in the
recursive call, we can skip the call to Solve for that call. We require cd to be
completely contained since the counter-example cube ξd returned by Solve is a
cube in which there exists a solution to the SMT formula, but not all points in
the cube are necessarily a solution. In most cases cd will be contained by one
or the other of the child cubes in the resursive calls, but it is possible that cd
could fall on an edge and thus not be applicable to either recursive call. In this
case, it is still possible that Optimization 1 can apply. We assume that Solve

will return the empty cube ∅ when the result is UNKNOWN which will supress
use of this optimization for the child invocations.

Optimized AIF Generation Algorithm. Figure 4 shows the fully opti-
mized abstract indicactor function incorporating both of the optmizations dis-
cussed above. Line 3 tests for conditions that allow us to skip the SMT check.
In the case that we are skipping a check, we can pass the existing cd to the child
recursive calls since it may apply to one of those calls as well. When doing the
SMT check with Solve at Line 4, we include an additional return parameter ξd

2 It could be UKNOWN if result from cube c is UKNOWN, but without loss of
soundness we treat an UNKNOWN as SAT for the purpose of this optimization.

Semantic Importance Sampling for SMC 9

(1) CubeSet aifGen(SMT I,Cube c,boolean assumeSAT,Cube cd)
(2) {
(3) if (!assumeSAT && cd != ∅ && !(cd ⊆ c)) {
(4) if (Solve(I, F−1(c), &xid) == UNSAT) return ∅;
(5) cd = F (ξd);
(6) }
(7) if (level(c) == Lmax) return {c};
(8) int k = (level(c)/G) % M;

(9) Cube c0 = c/k; Cube c1 = c/k;
(10) CubeSet s0 = aifGen(I, c0, false, cd);
(11) CubeSet s1 = ∅;
(12) if (s0 == ∅) s1 = aifGen(I, c1, true, cd);
(13) else s1 = aifGen(I, c1, false, cd);
(14) return s0 ∪ s1;
(15) }

Fig. 4. Optimized Abstract Indicator Function (AIF) Generation Algorithm;
G=variable grouping factor, M=number of input variables, Lmax=recusion depth limit.

in which the counter-example cube is returned. We assume that the empty set is
returned if the result is not SAT. At Line 5 we convert the input space cube ξd
to a quantile space cube cd. Lines 12 to 13 implement Optimization 1. If s0 = ∅,
then the result of the test for c0 was UNSAT and we can assume that the test
for c1 will be SAT.

4.3 Statistical Model Checking

After generating the AIF I∗M|=Φ(x), and computing p∗ and g∗(x), the last step
in SIS is the actual SMC. As peviously mentioned, we draw samples from the
distribution g∗(x) as defined in (3), then use (7) to estimate the raw probability
p̂raw and scale this by the value p∗ calculated above.

No. Of Samples. The number of samples N∗ needed to estimate p̂raw is:

N∗ =
1− praw

prawRE2(p̂raw)
=

1− p/p∗

p/p∗RE2(p̂raw)
(11)

From (6), we know that RE(p̂) = RE(p̂raw). Assuming small p and p∗ � p, the
speedup due to SIS can be estimated as:

N

N∗
=

1−p
pRE2(p̂)

1−p/p∗
p/p∗RE2(p̂raw)

=
1− p
p∗ − p

≈ 1

p∗
(12)

Random Input Generation. To generate a random input from g∗(x),
we recognize that this is the equivalent of generating an input from f(x) and
accepting only those that fall within I∗M|=Φ(x). We do this by first randomly
selecting a cube c from C∗ with uniform probability since each cube has equal
probability of containing a sample drawn from f(x). We then choose a uniform
vector u ∈ c and use the inverse CDF to generate the input vector as x = F−1(u).

10 Hansen, et. al.

.c model

SMT2

Prob.
dists

Dynamic
Exec (.so)

gcc

Verification
Cond. Gen.

Syntactic
Extraction

𝑰∗(𝑥)
dReal

+ Refinement
𝒑∗

|𝑪∗|

𝟐𝑳𝒎𝒂𝒙

𝒑 𝒓𝒂𝒘, 𝑹𝑬 Monte-Carlo 𝒑 , 𝑹𝑬

Fig. 5. Architecture of osmosis Tool.

5 Osmosis

We implemented SIS in a tool called osmosis. The input to osmosis is a de-
scription ofM in an anotated version of C, with the target property Φ defined as
ASSERT() statements. osmosis calculates the probability of an ASSERT() failure
via SIS, using dReal[4] as the backend SMT solver.

Osmosis Architecture. Figure 5 shows the architecture of osmosis. The
input model is processed by: (i) gcc to generate a dynamic executable; (ii) a
syntactic extractor which looks for //@dist declarations to determine the input
space and distributions; and (iii) a verification condition generator that generates
an SMT formula corresponding to the C model. Then aifGen (from Figure 3 or
Figure 4) is used to build the AIF I∗M|=Φ(x). This AIF is used to calculate p∗

and g∗(x), and in conjunction with the dynamically loaded executable forM to
calculate p̂raw and RE(p̂raw). Finally, p̂ is calculated using p∗ and p̂raw.

Osmosis Input Format. Figure 6(a) shows an example osmosis input
model. The anotations at Lines 5 and 6 indicate the input to the model. Line 5
defines a random input named “a” with a uniform distribution between 0 and 5.
Line 6 defines a random input named “b” with a normal distribution with mean
3, standard deviation 1 which has been censored to be between 0 and 5. Where
apprortiate, we refer to the model input collectively as he vector x.

There are two special functions/macros in osmosis models: (i) ASSERT()

defines a condition that is expected to be true; and (ii) INPUT_D() accesses a
random input declared in an annotation. The suffix _D on INPUT_D() indicates
the return type of double. In Figure 6(a), Lines 8 and 9 access inputs “a” and
“b” and place them in C variables also named “a” and “b”. Some computations
are performed on lines 10 and 1, then finally an assertion is made on Line 13. The
include on Line 1, allows the model include the special functions to be compiled
by a standard compiler such as gcc for use in the SMC phase.

SMT Generation. In order to implement Solve, osmosis translates the C
model into a verification condition represented as an SMT formula ϕ, which is in
essence, a representation of the indicator function IM|=Φ(x), i.e., any input value
x satisfies ϕ iff IM|=Φ(x) = 1. In constructing ϕ, stochastic inputs defined by the
@dist annotations in the C model use the same variable name as the declaration.

Semantic Importance Sampling for SMC 11

(1) #include "osmosis_model.h"
(2)
(3)
(4) //@dist a=uniform(min=0,max=5)
(5) //@dist b=normal(mean=3,std=1,

min=0,max=5)
(6) void model()
(7) {
(8) double a = INPUT_D("a");
(9) double b = INPUT_D("b");
(10) double c = a + b;
(11) double d = (a - b)/2.0;
(12)
(13) ASSERT(sin(c)*cos(d) <= 0.999);
(14) }

(1) (set-logic QF_NRA)
(2) (declare-fun a () Real)
(3) (declare-fun b () Real)
(4) (declare-fun a_1 () Real)
(5) (declare-fun b_1 () Real)
(6) (declare-fun c_1 () Real)
(7) (declare-fun d_1 () Real)
(8) (assert (>= a 0))
(9) (assert (<= a 5))
(10) (assert (>= b 0))
(11) (assert (<= b 5))
(12) (assert (= a_1 a))
(13) (assert (= b_1 b))
(14) (assert (= c_1 (+ a_1 b_1)))
(15) (assert (= d_1 (/ (- a_1 b_1) 2)))
(16) (assert (not (<= (* (sin c_1)

(cos d_1)) 0.999)))
(17) (check-sat)
(18) (exit)

(a) (b)

if (a > b)
a = cos(a*b);

(assert (= _C1 (> a_1 b_1)))
(assert (or (not _C1) (= a_2 (cos (* a_1 b_1)))))
(assert (or _C1 (= a_2 a_1)))

(c) (d)

Fig. 6. (a) osmosis Input Example; (b) SMT for osmosis Input Example; (c) a con-
ditional statement; and (d) its translation to SMT.

The model is also converted to single-static-assignment form so that each local
variable is assigned once. Finally, ASSERT() conditions are negated since we are
interested in testing if there are any inputs that can result in an assertion failure.

Assignments become equalities. Conditional (if) statements are translated
by generating a variable for the condition, then translating both branches as
consequences of implications of the condition, or the compliment of the condi-
tion. If there are differing numbers of assignments to a variable in the branches,
then an additional assertion is added to reconcile the generation numbers of
the variables. For example, the C statement in Figure 6(c) generates the SMT
assertions in Figure 6(d). Loop (while and for) statements are unrolled and
must include an annotation to indicate the maximim loop count. Note that the
construction of ϕ is effective and linear in the size of the model.

Figure 6(b) shows the ϕ generated from the M given in Figure 6(a). Line
8 through 11 define the intervals in the stochastic inputs. Lines 12 and 13 are
the assignments from the stochastic inputs to the local C variables from Lines
8 and 9 of the input model. Lines 14 and 15 correspond to the local variables
assignments in Lines 10 and 11 of the C model. Finally, Line 16 is derived from
the ASSERT() statement on Line 13 of the C model.

Monte-Carlo Simulation. The final step of osmosis is the Monte-Carlo
simulation to estimate p̂raw using (7). Each Bernoulli trial in this simulation
is conducted by directly executing the dynamically loadable executable of the
model. The model source file is compiled by gcc, dynamically loaded, then re-
peatedly called for each trial. Before each execution a random vector x∼ g∗(x)
is generated as described in the previous section and inititalized. A global flag

12 Hansen, et. al.

dReal Calls Time
Name In Lmax/G p∗ 1/p∗ none 1 2 1+2 none 1+2

simple 2
10/1 5.859× 10−3 169 49 38 26 26 0.15 0.1
12/1 2.197× 10−3 455 73 57 40 40 0.21 0.1

hockey 2
10/1 3.516× 10−2 28.4 255 213 142 137 315 228
12/1 1.148× 10−2 87.1 391 328 214 211 364 255

backoff 6
10/4 1.797× 10−1 5.6 479 451 240 240 33 14
12/4 1.797× 10−1 5.6 1583 1551 792 792 61 28

bounce 2
10/1 2.997× 10−2 33 117 86 59 59 91 53
12/1 1.221× 10−2 81 221 163 111 111 150 84

Table 1. AIF Generation Results; In=number of inputs; Lmax=recusrion depth limit;
G=variable grouping factor, Time=generation time in seconds; none, 1, 2 and 1+2
indicate which optimizations were used.

variable indicating success/failure is also cleared. The function INPUT_D() in-
dexes and returns a value from that vector. The ASSERT() statement tests the
condition, and if the condition fails it sets the global flag to true and returns.
Success or failure of the trial is recorded based on the value of the flag variable.
Trials resulting in an ASSERT() fail are inputs where IM|=Φ(x) = 1, and those
where the ASSERT() does not fail are inputs where IM|=Φ(x) = 0.

6 Results

To evaluate our technique, we tried osmosis on the following example problems:

simple The example problem from Figure 6a.
hockey A hockey puck gets a random initial impulse from a random direction.

Failure means that it stops on a point target after zero or more bounces.
backoff An exponential backoff problem in which two senders attempt up to 3

communications. Failure occurs if transmission for either exceeds a deadline.
bounce A ball is launched at a random initial angle and velocity. We test if it

falls in a small hole after potentially bouncing a number of times.

Each of these problems has the characteristic that the failure region is disjoint
in the input space. For example in the hockey problem there are multiple paths
by which the puck can reach the target. All experiments were peformed under
Linux Ubuntu 12.04 on a 2.2GHz Intel Core i7 machine with 16 Gb of RAM.

Table 1 shows the results for AIF generation on each example. For each
problem we adjust the recursion depth limit and the variable grouping factor
(number of successive times each input is split while recursing). We used a larger
G for the “backoff” example because we observed that a higher G leads to better
performance for models with larger numbers of inputs. Recall from (12) that 1/p∗

is an estimate for N
N∗ . Note that the value of p∗ value can be used to dynamically

limit the recursion depth when generating the AIF, terminating when we have

Semantic Importance Sampling for SMC 13

Time (sec.)
Name RE Lmax/G p̂ N N/N∗ SMC total

simple

0.01

CMC 5.95× 10−4 1.68× 107 – 6 6
10/1 5.89× 10−4 8.95× 104 187 <0.1 0.1
12/1 6.03× 10−4 2.64× 104 636 <0.1 0.1

0.001

CMC 5.910× 10−4 1.69× 109 – 580 580
10/1 5.910× 10−4 8.92× 106 189 4 4.1
12/1 5.910× 10−4 2.72× 106 304 1 1.1

hockey

0.01

CMC 6.18× 10−4 1.58× 107 – 6.8 6.8
10/1 6.18× 10−4 5.59× 105 28.3 0.3 228.3
12/1 6.22× 10−4 1.74× 105 90.1 0.1 255.1

0.001

CMC 6.215× 10−4 1.61× 109 – 687 687
10/1 6.214× 10−4 5.56× 107 29.0 25 253
12/1 6.212× 10−4 1.74× 107 92.5 8 263

backoff

0.01

CMC 1.21× 10−4 8.24× 107 – 25 25
10/4 1.20× 10−4 1.50× 107 5.5 6 20
12/4 1.21× 10−4 1.50× 107 5.5 6 34

0.001

CMC 1.193× 10−4 8.38× 109 – 2593 2593
10/4 1.190× 10−4 1.51× 109 5.5 553 567
12/4 1.194× 10−4 1.50× 109 5.6 543 571

bounce

0.01

CMC 2.96× 10−5 3.337× 108 – 133 133
10/4 3.00× 10−5 8.464× 106 39 4.1 57.1
12/4 2.97× 10−5 4.104× 106 81 2.0 86.1

0.001

CMC 2.989× 10−5 3.345× 1010 – 13,619 13,619
10/4 2.993× 10−5 8.474× 108 39.5 432 485
12/4 2.994× 10−5 4.068× 108 82 209 293

Table 2. SMC Results; RE = RE(p̂)=target relative error; G=group factor.

acheived a sufficient gain, or when there is insufficient improvement from one
level to the next. The four columns under “dReal Calls” show the number of
calls that were made to dReal using no optimization, using Optimization 1 only,
using Optimization 2 only and using both optimizations (see Section 4.2).

We see that both optimizations are effective at reducing the number of calls,
but that Optimization 2 peforms better, reducing the number of calls as well as
total SMT solving time by half in most cases. Also, while there is some benift to
using both optimizations together, the additional advantage is relatively small.
This is because when using both optimizations together, Optimization 1 can only
be applied when the counter-example employed by Optimization 2 falls on a cube
boundary, or when analysis of a parent cube timed out and is UNKNOWN.

Finally, the “Time” column shows the time to generate I∗M|=Φ(x) in seconds.

Times using no optimization (none), and using both optimizations (1+2) are
shown to demonstrate the impact of the optimization techniques. Note that in
our current implementation, we do not parallelize the calls to dReal, which could
lead to additional gains.

14 Hansen, et. al.

Table 2 shows the results from the SMC phase of osmosis. For each sample
problem, we show the results for target relative errors (RE) of 0.01 and 0.001.
At each target RE, we compare Crude Monte-Carlo (CMC) with SIS using two
different recursion depth limits as shown in the Lmax/G column. The probability
estimate for each experiment is shown in the p̂ column. We see that the estimates
for CMC and SIS are very close for each problem, and that as expected the
agreement for those at a relative error of 0.001 are in closer agreement.

The column labeled N shows the number of samples needed to acheive the
target relative error for each experiment, and the column labeledN/N∗ shows the
improvement of SIS over CMC for the SIS experiments. We can see improvements
ranging from a factor of 5 to a factor of over 600. When we compare the measured
N/N∗ to the values predicted by 1/p∗ in Table 1, we see good agreement. For
example, in the “hockey” problem with a recusion depth of 10, we got 28.4 as the
predicted improvement, compared to measured improvements of 28.3 for a target
RE of 0.01 and 29.0 for a target RE of 0.001. Note that the predictions for the
“simple” example slightly underestimate the measured improvements because
the p∗ values are close the measured probabilities while the predicition assumes
p∗ � p and will tend to underestimate as p∗ approaches p.

That last two columns show the verification time for the SMC phase alone,
and for the total time including the abstract indicator function generation time
shown in Table 1. We see that SIS outperforms CMC in all cases but one, often
by multiple orders of magnitude. Also since the cost for generating the abstract
indicator function is fixed regardless of the target RE, there will always be some
target RE for which SIS outperforms CMC.

7 Conclusion

Statistical model checking (SMC) is a prominent approach for rigorous analysis
of stochastic systems using Monte-Carlo simulations. In this paper, we devel-
oped a new technique, called Semantic Importance Sampling (SIS), to advance
the state-of-the art in applying SMC to compute the probability of a rare event
using a small number of simulations. SIS uses the semantics of the target system
to recursively compute an abstract indicator function (AIF), which is subse-
quently employed to perform SMC. We also present two optimizations to SIS
that reduce the number of calls to SMT solvers needed to compute the AIF.
We have implemented SIS in a tool called osmosis, and experimented with a
number of examples. Our results indicate that SIS reduces cost of SMC by or-
ders of magnitude, and our optimizations, in combination, reduce the cost of
SMT solving by half. We believe that extending SIS to analyze stochastic sys-
tems compositionally, and combining it with symbolic simulation techniques, are
important directions for future research.

References

1. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Quantitative Verification
of Implantable Cardiac Pacemakers. In: Proceedings of the 33rd Real-Time Systems

Semantic Importance Sampling for SMC 15

Symposium (RTSS ’12). pp. 263–272. IEEE Computer Society, San Juan, PR, USA
(December 2012)

2. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems.
In: Bultan, T., Hsiung, P.A. (eds.) ATVA. Lecture Notes in Computer Science,
vol. 6996, pp. 1–12. Springer (2011), http://dblp.uni-trier.de/db/conf/atva/
atva2011.html#ClarkeZ11

3. Feng, L., Kwiatkowska, M.Z., Parker, D.: Automated Learning of Probabilistic As-
sumptions for Compositional Reasoning. In: Giannakopoulou, D., Orejas, F. (eds.)
Proceedings of the 14th International Conference on Fundamental Approaches to
Software Engineering (FASE ’11). Lecture Notes in Computer Science, vol. 6603,
pp. 2–17. Springer-Verlag, Saarbrücken, Germany (March–April 2011)

4. Gao, S., Kong, S., Clarke, E.: dreal: An smt solver for nonlinear theories over
the reals. In: Bonacina, M. (ed.) Automated Deduction CADE-24, Lecture Notes
in Computer Science, vol. 7898, pp. 208–214. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-38574-2_14

5. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (December 1994)

6. Heath, J., Kwiatkowska, M.Z., Norman, G., Parker, D., Tymchyshyn, O.: Prob-
abilistic model checking of complex biological pathways. Theoretical Computer
Science (TCS) 391(3), 239–257 (February 2008)

7. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-
bilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings
of the 23rd International Conference on Computer Aided Verification (CAV ’11).
Lecture Notes in Computer Science, vol. 6806, pp. 585–591. Springer-Verlag, Snow-
bird, UT, July 14 - July 20, 2011. New York, NY (July 2011)

8. Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic Model Checking of
Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal
Aspects of Computing (FACJ) 14(3), 295–318 (April 2003)

9. Srinivasan, R.: Importance Sampling: Applications in Communications and De-
tection. Engineering online library, Springer (2002), http://books.google.com/
books?id=ZYytEwpH5BQC

10. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, University of Nijmegen, the Netherlands (2002), available
via http://www.soe.ucsc.edu/~marielle

11. Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA
(2004), http://portal.acm.org/citation.cfm?id=1087528

